
An Empirical Evaluation of
Manually Created Equivalent Mutants

Philipp Straubinger
University of Passau

Passau, Germany

Alexander Degenhart
University of Passau

Passau, Germany

Gordon Fraser
University of Passau

Passau, Germany

Abstract—Mutation testing consists of evaluating how effective
test suites are at detecting artificially seeded defects in the
source code, and guiding the improvement of the test suites.
Although mutation testing tools are increasingly adopted in
practice, equivalent mutants, i.e., mutants that differ only in
syntax but not semantics, hamper this process. While prior
research investigated how frequently equivalent mutants are
produced by mutation testing tools and how effective existing
methods of detecting these equivalent mutants are, it remains
unclear to what degree humans also create equivalent mutants,
and how well they perform at identifying these. We therefore
study these questions in the context of Code Defenders, a mutation
testing game, in which players competitively produce mutants and
tests. Using manual inspection as well as automated identification
methods we establish that less than 10% of manually created
mutants are equivalent. Surprisingly, our findings indicate that
a significant portion of developers struggle to accurately identify
equivalent mutants, emphasizing the need for improved detection
mechanisms and developer training in mutation testing.

Index Terms—Mutation Testing, Equivalent Mutants

I. INTRODUCTION

Mutation testing is a well-established industry practice for
identifying weaknesses in test suites and guiding test cre-
ation [1]. It involves introducing artificial faults (mutants) into
the source code and assessing whether the corresponding test
suites can detect them, thus classifying mutants into killed
(detected by the test suite) or alive (undetected) [2]. Killed
mutants provide a quantitative assessment of the test suite
quality in terms of a mutation score (i.e., the ratio of killed
mutants to mutants overall), and surviving mutants point out
to developers where there are test gaps.

However, not all mutants can be killed in the first place:
Equivalent mutants are semantically equivalent to the original
source code, even though they differ in syntax, such that
it is impossible to create tests that distinguish between the
mutant and the original program. Equivalent mutants skew
mutation scores and are misleading for developers, who need
to manually discern whether a live mutant is equivalent or
signifies a genuine test gap [3].

Contemporary mutation testing tools, such as PIT,1 incor-
porate mechanisms to identify or avoid equivalent mutants.
These mechanisms often rely on compiler outputs [4], [5] or
specific patterns associated with equivalent mutants [3], [6],

This work is supported by the DFG under grant FR 2955/2-1, “QuestWare:
Gamifying the Quest for Software Tests”.

1https://pitest.org/

effectively identifying the most trivial cases. However, com-
plex equivalent mutants still elude automated detection and
require manual intervention by developers [3], [7]. Manual
inspection of mutants, however, is time-consuming and prone
to false positives and false negatives [7].

Despite existing research on how common equivalent
mutants are in practice and how difficult they are to
detect [8], [9], the current body of knowledge is based on
established mutation tools using standard mutation operators
to generate mutants. However, less is known about mutants
created manually, such as through mutation testing games
such as Code Defenders [10]–[12]. Examining such human-
generated mutants is important for several reasons. First,
developers would need to deal with such mutants when us-
ing crowdsourcing for mutation testing [12]. Second, human
created mutants are an important element of software testing
education, where mutation-based assignments, exercises, and
games [11] are common. Finally, a recent trend lies in using
deep learning models to mimic human edits and produce more
similar mutants [13]–[15]. In all of these cases, a deeper
understanding in the tendency of humans to produce equivalent
mutants, and their ability to detect this, is important.

This paper aims to address the gap of knowledge on
equivalence in human generated mutants by leveraging data
accumulated through several years worth of Code Defenders
usage in the context of a university course. In Code Defenders,
players can assume the role of an attacker, introducing mu-
tants, or a defender, creating tests to detect mutants. To cope
with equivalent mutants, the game includes dedicated features
focusing on equivalence, such as equivalence duels, where
one player can claim a mutant as equivalent, and the mutant
creator must either disprove the equivalence or accept the
claim. Using the resulting dataset of mutants and tests for a set
of Java classes, we investigate how many mutants can be killed
by existing tests, how many of the remaining mutants can
be detected as equivalent by automated equivalence detection
techniques, and how many are actually equivalent. In detail,
the contributions of this paper are as follows:

1) We provide an extensive dataset comprising 18,000 man-
ually written mutants and 11,000 corresponding tests in
ten different Java classes.

2) We evaluate how well existing automated methods to
identify trivial equivalent mutants perform on manually
created equivalent mutants.

https://pitest.org/


3) We manually classify a substantial number of equivalent
mutants, and assess the ability of players of Code
Defenders to identify and classify equivalent mutants.

The results reveal that less than 10% of the manually created
mutants are equivalent, and nearly two-thirds of players were
unable to accurately identify manually created equivalent
mutants. This may have implications beyond education, ques-
tioning the validity of equivalent mutation classifications by
humans in general.

II. BACKGROUND

A. Mutation Testing

Mutation testing describes the process of seeding artificial
defects (mutants) into source code to identify weaknesses in
existing test suites. The use of small, artificial defects is based
on the Coupling Effect and Competent Programmer hypothe-
ses [16]. The former suggests that tests revealing simple errors
are effective in also uncovering more complex errors, while the
latter posits that programmers create nearly correct programs
with small deviations from the correct program [2]. Mutants
can be classified based on the result of executing available
tests against them: A failing test indicates a killed mutant,
while mutants survive if all tests pass. Live mutants imply
potential test suite deficiencies, and developers can use this
information to strengthen their test suites. The ratio of killed
to generated mutants represents the mutation score, and serves
as a metric correlated with a test suite’s fault-detection ability,
surpassing metrics like code coverage [17].

While the theoretical aim would be to achieve a mutation
score of 100%, and thus having a strong test suite able to detect
all mutants, this goal is usually not achievable, as mutants may
be semantically equivalent despite their syntactical differences.
An equivalent mutant cannot possibly be killed by a test.

B. Equivalent Mutants

Equivalent mutants are mutated versions of the original code
that, despite their altered structure, produce the same output as
the unmutated code when subjected to a set of tests [3]. These
mutants introduce functionally equivalent changes, making
them challenging to distinguish from the original code solely
based on traditional testing methods. Since finding equivalent
mutants is an undecidable problem [18], it is mostly done
using heuristics and partial solutions [3].

Detecting equivalent mutants involves addressing a binary
classification task with potential errors: False negatives occur
when an equivalent mutant is erroneously labeled as non-
equivalent, while false positives represent non-equivalent mu-
tants inaccurately marked as equivalent. In mutation testing,
false positives are considered more critical as they lead to the
exclusion of potentially important killable mutants [3].

Manual analysis is often necessary to identify equivalent
mutants but may require significant time investment and is
prone to false positives. For example, Schuler and Zeller [7]
report that manual classification took 15 minutes per mutant.
Yao et al. [19] reported 6 person-months of manual analysis ef-
fort dedicated entirely to classifying 1230 mutants. Automated

techniques for detecting equivalent mutants are thus desirable,
and fall into two main categories [4]: Detect Approaches,
which directly determine whether a mutant is equivalent, and
Reduce Approaches, which provide an order from less likely
to more likely equivalent mutants.

Recently, Trivial Compiler Equivalence (TCE [4]) and its
extended version TCE+ [5] have been demonstrated to be
effective at identifying equivalent mutants. TCE identifies
equivalent mutants by comparing output files after the com-
pilation of the source code, assuming that equivalent mutants
will produce identical compiled outputs. TCE+ builds upon
this approach by incorporating an additional optimization step
post-compilation, enhancing its effectiveness, especially in lan-
guages like Java, where optimization occurs at runtime. Unlike
TCE, TCE+ compares output files after the optimization step.

The increasing adoption of machine learning approaches in
software engineering has also resulted in predictive approaches
not only to speed up mutation testing [20], but also to classify
equivalent mutants [6], [21]–[23]. Such machine learning
approaches require datasets of equivalent mutants such as
MutantBench [24], but since these datasets require substantial
manual labelling effort there are efforts to use automation to
automatically augment equivalent mutant datasets [25].

C. Code Defenders

Code Defenders is a web application that gamifies Mutation
Testing, where players have to competitively create mutants
and writing tests to kill them [10]. Code Defenders was de-
vised as a crowdsourcing platform to elicit strong mutants and
tests, and also serves as a valuable tool for teaching software
testing, addressing the common perception among students
is that testing is more tedious than software development
itself [26]. By incorporating mutation testing, Code Defenders
familiarizes aspiring developers with testing concepts, poten-
tially increasing the practical application of mutation testing in
real-world scenarios [27]. Code Defenders has been positively
received by students, enhancing their testing skills during a
software testing course [11]. It is publicly accessible,2 open-
source,3 and therefore used by different universities globally.

1) Game Modes: Code Defenders currently offers three
game modes: The Puzzle Mode is a single-player experience
where players solve predefined tasks using mutants/tests. The
Battleground Mode represents the default multiplayer experi-
ence, where players are divided into teams of attackers and
defenders, competing over a Java class under test. Finally,
the Melee Mode is a multiplayer option where all players
compete against others, each player taking on both attacker
and defender roles simultaneously.

2) Testing: Depending on the game mode (i.e., easy vs.
hard), defenders can either see only the locations of mutants
in the game, or also their diff, and then have to create tests
to kill these mutants. Tests are created in a web-based user
interface and may use various common test libraries such

2https://code-defenders.org
3https://github.com/CodeDefenders/CodeDefenders

https://code-defenders.org
https://github.com/CodeDefenders/CodeDefenders


as JUnit5,4 Hamcrest,5 and Google Truth.6 When tests are
submitted, they undergo compilation and validation checks
before acceptance into the game. The validation ensures tests
are non-flaky, deterministic, concentrate on testing a limited
set of functionalities, and pass on the original class under test.
Depending on the game mode there are certain restrictions
on what code is permitted in the tests to ensure fairness and
clean tests. For example, Code Defenders checks submitted
tests to ensure they do not contain loops, calls to System.*,
additional methods, conditionals, or exceed a configurable
maximum number of test assertions.

3) Mutation: Attackers create mutants by editing the CUT
and submitting their modified versions (Fig. 1). Code Defend-
ers first validates these mutants based on a configurable Mutant
Validation Level, which can be categorized as strict, moderate,
or relaxed. These levels try to prevent both equivalent and
unfair mutants, e.g., relying on random values. In the relaxed
level, there are minimal restrictions, only disallowing calls to
System.* and Random. The moderate level targets mutants
that might be hard to kill but offer no value for testers.
Restrictions include modifying comments, adding additional
logical operators and control structures, as well as ternary
operators. The strict level prohibits adding bitwise operators,
using reflection, and modifying signatures. Code Defenders
also performs basic equivalence detection by stripping whites-
paces and comparing mutant and original CUT. This prevents
intentional or accidental submission of equivalent mutants
(e.g., submitting after adding only a new line).

In addition to the validation of the restrictions, a hash is
computed based on the whitespace-stripped mutant code. This
hash is used to identify duplicate mutants within a game. If a
mutant with the same hash already exists, the newly submitted
mutant is rejected. This serves as a basic duplicate detection
approach, preventing players from submitting identical mu-
tants multiple times by accident or for point farming.

4) Intent Collection: While defenders always need to rea-
son about code behavior and existing mutants when creating
tests, attackers may, in particular in earlier phases of the
game where the coverage achieved by the defenders is still
low, arbitrarily mutate code without deeper thought. While
this is a strategy that likely backfires later in the game, it
is particularly undesirable in an educational context [11].
Therefore, a configurable feature aiming to force players to
think more deeply about their actions before submitting them
is intent collection: If enabled, players are required to provide
additional metadata when submitting mutants or tests. In
particular, attackers have to specify whether they intended to
create a killable or equivalent mutant, or they can choose don’t
know if they are uncertain about the mutant’s equivalence.
Defenders must select a line in the CUT they intend to target
when intent collection is activated.

5) Equivalence Duels: Regardless of whether created on
purpose or by accident, equivalent mutants are a common

4https://junit.org/junit5/
5https://hamcrest.org/JavaHamcrest/
6https://github.com/google/truth

TABLE I
OVERVIEW OF CLASSES USED FOR ANALYSIS

CUT Alias Years played Number of Games

ByteVector 1 8
Complex V1 2 23
Complex V2 1 20
Document 3 24
HSLColor 1 8
IntHashMap 5 40
Lift 3 37
Options 3 24
Rational 2 36
SparseIntArray 5 43

aspect of games, and therefore integrated using the concept
of Equivalence Duels. After defenders have attempted to kill
a mutant and managed to create at least one test that covers it
without killing it, they challenge the attacker who created the
mutant to such a duel. Code Defenders can also be configured
to automatically trigger these duels if a mutant has been
covered by a specified number of tests without being killed.

When challenged to an equivalence duel for a mutant they
created, the attacker is temporarily blocked from submitting
more mutants until the duel is resolved (Fig. 2). The duel can
be resolved by the attacker by submitting a valid test that kills
the mutant, thus proving its non-equivalence and earning the
attacker a win. Submitting a valid test that does not kill the
mutant results in the defender suspecting the mutant to be
equivalent winning the duel. Alternatively, the attacker can
also accept the mutant as equivalent, leading the defender
to win the duel and assuming the mutant’s equivalence. To
incentivize attackers to invest time in thoughtful testing, losing
an equivalence duel results in the loss of all accumulated points
for the mutant, while winning the duel earns the attacker an
additional point. Independently of the game difficulty setting,
attackers always get to see the diff of the mutant that is part
of the duel, since they created it in the first place.

III. EVALUATION

To understand the role of equivalent mutants within Code
Defenders, we aim to answer the following research questions:

• RQ 1: How well does TCE(+) perform on manually
written mutants?

• RQ 2: How many equivalent mutants do players of Code
Defenders create?

• RQ 3: How well do players perform at detecting (non-)
equivalent mutants?

A. Dataset

Our dataset encompasses information gathered from ses-
sions using Code Defenders during Software Testing lectures
at University of Passau over the last five years (2018–2022).
From this data, we extracted the source code for the Classes
Under Test (CUTs), along with details about the number and
types of games, mutants, and tests associated with each game.
Our focus is on battleground games, the most established game
type used consistently across all years.

https://junit.org/junit5/
https://hamcrest.org/JavaHamcrest/
https://github.com/google/truth


Fig. 1. Attacker view of Code Defenders

Throughout these years, various CUTs were utilized in Code
Defenders sessions, predominantly chosen from an available
pool [11]. To ensure a sufficient number of mutants and tests
for each CUT, we included all CUTs played in at least two
years. However, changes to attribute visibilities and additional
getters in the Complex class led to two different versions
of this class, which we count as two distinct CUTs in the
dataset. The Code Defenders instances not only featured games
played seriously but also those created exclusively for testing
or demonstration purposes. Consequently, we excluded games
with fewer than 15 submitted mutants and tests, respectively.
This process resulted in a total of 10 CUTs (Table I).

To prepare the dataset for further evaluation, we compiled
and executed all extracted tests against the corresponding CUT,
eliminating any tests that either failed to compile or did not
pass against the unchanged CUT. In a subsequent step, we
compiled the mutants, discarding those that did not compile.
The tests from the preceding step were then executed against
each mutant. Any mutants for which at least one test fails were
then classified as killable, as they cannot be equivalent.

Table II presents an overview of both the killed and alive

TABLE II
KILLED MUTANTS

CUT Alias Total Kill. Alive Kill. % Alive % Tests

ByteVector 608 477 131 78.45% 21.55% 236
Complex V1 1447 1341 106 92.67% 7.33% 517
Complex V2 1374 1281 93 93.23% 6.77% 797
Document 1791 1651 140 92.18% 7.82% 1009
HSLColor 739 553 186 74.83% 25.17% 342
IntHashMap 3472 3253 219 93.69% 6.31% 2935
Lift 1862 1684 178 90.44% 9.56% 1254
Options 1845 1758 87 95.28% 4.72% 684
Rational 1383 1205 178 87.13% 12.87% 681
SparseIntArray 3702 3392 310 91.63% 8.37% 2806

Total 18223 16595 1628 91.07% 8.93% 11261

mutants after running the tests against them. It also includes
the total number of mutants and tests separated by CUT.
Notably, more than 90% of all valid mutants in the datasets
were killed by tests. For the majority of CUTs, the ratio of
killed mutants exceeds 90%. However, ByteVector and
HSLColor stand out as apparent outliers. Several factors
could contribute to their lower percentage of killed mutants.



Fig. 2. Equivalence duel during a game of Code Defenders

One possibility is that fewer games were played with these
two classes, resulting in fewer accumulated tests, particularly
for corner cases (about 200 to 300 tests for ByteVector and
HSLColor compared to more than 500 for all other CUTs).
Another factor could be that the games involving these two
classes utilized the Intention Collection feature, potentially
influencing how many equivalent mutants attackers create.

B. Analysis Procedure

1) RQ 1: How well does TCE(+) perform on manually
written mutants: The first research question aims to evaluate
how well the state-of-the-art approaches for identifying equiv-
alent mutants, TCE/TCE+, performs at identifying equivalent
mutants created in Code Defenders games. Trivial Compiler
Equivalence (TCE) [4] identifies mutants as equivalent if their
compiled files match the compilation output of the original
CUT. However, since Java’s compilation involves minimal
optimization, particularly compared to languages like C or
Fortran, TCE may not be as effective. To address this, we
also utilize TCE+, an extension of TCE that incorporates an

optimization step after compilation, utilizing the optimized
class files for equivalence detection [5].

The required files for TCE are obtained by compiling the
sources, while for TCE+ detection, the class files must undergo
an optimization after compilation. Following the approach in
the original TCE+ paper [5], we employ ProGuard,7 an open-
source shrinker and optimizer designed for Java, primarily
aimed at Android apps. Our configuration of ProGuard re-
tains all classes, methods, and attributes regardless of their
access modifiers, a crucial consideration as tests may employ
reflection to access attributes or methods.

To ensure that ProGuard optimization retains all components
used by the tests, the initial step involves optimizing the CUTs,
followed by executing the test suites against the optimized
versions to confirm the success of all tests. Subsequently,
the mutants undergo optimization as well. To assess whether
the class files of a mutant (whether normal or optimized)
match those of the CUT, we generated SHA256 hashes for

7https://github.com/Guardsquare/proguard

https://github.com/Guardsquare/proguard


TABLE III
NUMBER OF (RESOLVED) DUELS

CUT Alias Duels Mutants killed outside Resolved duels

ByteVector 66 6 34
Complex V1 36 2 26
Complex V2 59 0 43
Document 276 17 186
HSLColor 190 17 129
IntHashMap 1067 113 822
Lift 215 8 137
Options 196 25 83
Rational 129 7 69
SparseIntArray 693 41 554

Total 2927 236 2082

all .class files and verified whether the checksums of all
mutant files correspond to those of the CUT.

This leaves us with a set of mutants that are neither killed
by tests, nor flagged as equivalent by TCE or TCE+. Next, we
manually examined a random sample constituting 20% of the
remaining mutants in each subgroup: those not eliminated by
a test in a duel, mutants marked as equivalent in a duel, and
mutants neither involved in a duel nor eliminated. This process
yielded an estimated ratio of equivalent mutants in the initial
dataset, which we could then compare with the number of
equivalent mutants identified by TCE and TCE+.

2) RQ 2: How many equivalent mutants do players of Code
Defenders create?: The overall dataset combines mutants
from multiple games for multiple classes. To understand player
behavior in games and answer this research question, we
reuse the data containing both the automatically and manually
tagged equivalent mutants gathered from RQ1.

3) RQ 3: How well do players perform at detecting
(non-) equivalent mutants: To answer this research question,
we consider the two mechanisms intended to address equiva-
lent mutants in Code Defenders: First, we extract equivalence
duels from the database, including the current state of the
mutant under consideration. We compare the ratio of equiva-
lent mutants with and without equivalence duels and further
analyze mutants with automatically triggered versus manually
triggered equivalence duels. Additionally, we examine player
actions in equivalence duels based on whether the duel subject
is an equivalent mutant or not. For equivalent mutants, this
involves whether the player accepted the mutant as equivalent
or submitted a killing test. For non-equivalent mutants, we
also investigated whether the player accepted the mutant as
equivalent, submitted a killing test, and assessed whether that
test successfully killed the mutant.

To maintain data consistency and meaningfulness, six mu-
tants from a single Document CUT game were excluded
from further analysis. In these cases, the attacker provided
a test that killed the mutant, yet these mutants were not killed
in the analysis, with one even identified as equivalent. This
discrepancy may have arisen from mishandling an edge case
or a temporary system problem during that specific game.

There are several instances where mutants included in

equivalence duels are killed outside of their duel, which occurs
when a defender submits a new test after a duel has been
triggered (Table III). This can result in the mutant being
killed by the defender, causing issues with the duel resolution
process. Table III shows that this affects at least 5% of all
equivalence duels for nearly all CUTs. To conduct further
analysis, we exclude these mutants from the study as their
deaths outside of the duel prevent a normal resolution status
from being available. Additionally, we also excluded duels that
were not resolved by the end of the game, where the resolving
rate ranged between 49% and 86% for the different CUTs.

Second, we extract intention information and correlate it
with the data collected in Section III-B1 regarding whether
mutants were killed or identified as equivalent. For the remain-
ing unknown mutants, we apply the same sampling strategy as
in Section III-B1 to manually investigate 20% per subgroup
(intended equivalent, intended not equivalent, and not pro-
vided), providing an estimate for all mutants. We then analyze
how many mutants have a correct, incorrect, or unknown
intent, and explore whether players performed equally well in
classifying equivalent and non-equivalent mutants or if they
were more adept at identifying one over the other.

C. Threats to Validity

a) Threats to external validity: Potential variations in
surrounding conditions during game sessions and the dataset’s
specificity to the Code Defenders session at the university
may limit the generalizability of results to other contexts or
CUTs. In particular intent information for mutants is available
only for two CUTs (ByteVector and HSLColor). Changes
in dependencies, Java versions, and Code Defenders over the
years may further limit the external validity of the findings.
Involving only students in generating mutants and conducting
tests could reduce the applicability of the findings and might
yield different outcomes compared to professionals working in
industry settings. However, it is worth noting that the students
who took part in this study were nearing the completion of
their Bachelor’s degrees, implying they already possessed a
certain level of knowledge and experience in testing.

b) Threats to internal validity: The manual analysis of
mutants introduces the potential for misclassification, which
we tried to minimize using a combination of large test suites
dedicated to detecting mutants and automated detection meth-
ods. Our sampling procedure for classifying subpopulations of
mutants may result in a bias, which we tried to mitigate using
a large sample with substantial manual classification effort.

IV. RESULTS

A. RQ 1: How many equivalent mutants are detected auto-
matically?

Table IV provides an overview of the live mutants before
automatic detection, excluding mutants killed by tests con-
tained in the dataset, and the number of mutants automatically
identified as equivalent by either TCE or TCE+ alongside the
remaining unknown mutants, which were neither automatically
killed nor flagged as equivalent.



TABLE IV
AUTOMATICALLY DETECTED MUTANTS BASED ON ALIVE MUTANTS

CUT Alias Alive Detected Unknown
Total %

ByteVector 131 26 19.85% 105
Complex V1 106 39 36.79% 67
Complex V2 93 28 30.11% 65
Document 140 22 15.71% 118
HSLColor 186 46 24.73% 140
IntHashMap 219 63 28.77% 156
Lift 178 56 31.46% 122
Options 87 3 3.45% 83
Rational 178 60 33.71% 118
SparseIntArray 310 91 29.35% 219

Total 1628 434 26.66% 1193

0 10 20 30 40 50 60 70
Detection Ratio (%)

ByteVector

Complex_V1

Complex_V2

Document

HSLColor

IntHashMap

Lift

Options

Rational

SparseIntArray

CU
T 

Al
ia

s

Technique
TCE+
TCE

Fig. 3. Equivalent Mutant Detection Ratios for the TCE and TCE+ techniques

Notably, of the approximately 1600 mutants remaining after
removing all killed mutants, more than a fourth were detected
as equivalent. The ratio of detected equivalent mutants varies
across CUTs, ranging from around 3% to nearly 37%. No
apparent reasons explain the variations in the ratio of detected
equivalent mutants among the remaining live mutants. One
minor observation is that the Options CUT, with the lowest
ratio of detected equivalent mutants (i.e., 3%), also had the
highest ratio of killed mutants (i.e., 95%), although this
is likely coincidental, as related comparisons do not align
(i.e., the highest ratio of detected equivalent mutants do not
correspond to the lowest ratio of killed mutants).

The manual classification of 22.5% (268) of the remaining
mutants not identified by TCE/TCE+ allows us to estimate
the total number of equivalent mutants, and the detection
ratio of both techniques. TCE+ achieves an equivalent mutant
detection ratio ranging from around 32% to 48% in most
cases (see Fig. 3), with the best detection ratio exceeding
65%. On the other hand, TCE detects a maximum of 38% of
all equivalent mutants, with detection ratios between 9% and
22%. Overall, TCE detected 16.7% of all equivalent mutants,
whereas TCE+ managed to detect 41.5%.

All mutants identified as equivalent by TCE were also

while (it.hasNext()) {
- IndexableField field = it.next();
+ IndexableField field;
+ field = it.next();

if (field.name().equals(name)) {
it.remove();

Listing 1. Equivalent mutant in Document found by TCE+ but not by TCE

TABLE V
EQUIVALENT MUTANT RATIOS PER CUT FOR ALL MUTANTS

CUT Alias Detected Estimated Total

ByteVector 4.28% 9.05% 13.32%
Complex V1 2.70% 1.42% 4.12%
Complex V2 2.04% 2.55% 4.59%
Document 1.23% 4.39% 5.62%
HSLColor 6.22% 6.77% 12.99%
IntHashMap 1.81% 0.87% 2.68%
Lift 3.01% 4.64% 7.65%
Options 0.16% 1.85% 2.01%
Rational 4.34% 5.69% 10.03%
SparseIntArray 2.46% 3.90% 6.36%

Total 2.38% 3.36% 5.75%

detected by TCE+, and TCE+ consistently outperforms TCE
across all CUTs (Fig. 3). The degree of improvement with
TCE+ compared to TCE varies among different CUTs. For
some classes (e.g., Rational and SparseIntArray),
TCE+ identifies approximately four times as many equiva-
lent mutants as TCE, while for others (e.g., ByteVector,
HSLColor, and Options), the additional optimization step
reveals only around 50% more mutants. An example of a
mutant detected by TCE+ but not by TCE is illustrated in
Listing 1. In this case, a field’s declaration and initialization are
separated into two lines, a similarity that TCE+ can recognize
because it results in the same Java bytecode after optimization.

Summary (RQ 1): TCE and TCE+ successfully identi-
fied more than a quarter of the remaining alive mutants as
equivalent. TCE+ consistently outperformed TCE in detecting
equivalent mutants across different CUTs, with a detection rate
of 41.5%, while TCE only achieved 16.7%.

B. RQ 2: How many equivalent mutants do players of Code
Defenders create?

Given the classification of equivalent and non-equivalent
mutants allows us to look at player behavior, i.e., how many
equivalent mutants are usually created in a game of Code
Defenders. Table V shows the average ratio of equivalent
mutants among all submitted mutants, suggesting a range of
2% to approximately 13% per game with a total of 5.75%.

Notably, the Options CUT exhibits the lowest share of
equivalent mutants, aligning with its highest percentage of
mutants detected as not equivalent and the lowest percentage
of mutants automatically identified as equivalent. Conversely,
the ByteVector and HSLColor CUTs have the highest
ratio of equivalent mutants. Interestingly, games for these two
CUTs utilized the Intention Collection feature, where players



TABLE VI
NUMBER OF RESOLVED DUELS AND THEIR OUTCOMES WITH EM = EQUIVALENT MUTANT

CUT Alias Resolved duels Resolved duels / game Mutant killed by test EM survived test Non EM survived test Correctly accepted Wrongly accepted

ByteVector 34 4.25 8 4 3 17 5
Complex V1 26 1.13 3 4 1 9 10
Complex V2 43 2.15 20 8 5 6 9
Document 186 7.75 94 28 21 41 23
HSLColor 129 16.13 60 23 17 38 8
IntHashMap 822 20.55 209 179 162 55 379
Lift 137 3.70 47 27 13 39 23
Options 83 3.46 29 21 17 11 22
Rational 69 1.92 13 15 7 33 7
SparseIntArray 554 12.88 157 132 88 93 172

Total 2082 7.92 640 441 334 342 658

TABLE VII
RESULTS OF THE MUTANT INTENTIONS GIVEN BY THE PLAYERS, AND

THEIR EQUIVALENCE STATUS

CUT Alias Total Correct % Incorrect % Not provided %

Intention given by the players

ByteVector 608 88.32% 4.11% 7.57%
HSLColor 739 88.36% 6.22% 5.41%

When the intention was not equivalent

ByteVector 527 92.18% 1.53% 6.3%
HSLColor 643 93.07% 1.23% 5.7%

When the intention was equivalent

ByteVector 81 64.29% 20.24% 15.48%
HSLColor 96 54.44% 42.22% 3.33%

indicated whether they intended to create an equivalent mutant
or not. With this feature enabled, players might intentionally
create more equivalent mutants because they are aware of the
possibility. Conversely, in games featuring other CUTs, people
may create most of their equivalent mutants unintentionally.

While manually inspecting the sample of remaining un-
known mutants, we observed that some mutants were
trivially equivalent. These mutants often employed pat-
terns such as adding equivalent arithmetic (e.g., adding
+<value>-<value> with the value typically being +0 and
*1 like in Listing 3), introducing unnecessary calls to methods
or field declarations as depicted in Listing 4, or expanding
comparisons which would result in the same return value
(see Listing 5). We conjecture that these are intentionally
created equivalent mutants: If playing in hard mode the actual
syntactical change is not shown to defenders, and in that case,
it does not matter what an equivalent mutant looks like.

There are also non-trivial equivalent mutants, such as shown
in Listing 2: The mutant wraps a method call, computing the
absolute value around another method that retrieves the index
of a key, which is always a positive number; this mutant would
also be the result of a traditional “absolute value insertion”
mutation, but it can be detected neither by TCE nor by TCE+.

Some mutants in our dataset also proved challenging to
detect rather than equivalent. For example, Listing 6 shows a
mutant that replaces the return type from a SingletonList
to an ArrayList, a change that can only be identified by

if (requiredOpts.contains(key)) {
- requiredOpts.remove(
- requiredOpts.indexOf(key));
+ requiredOpts.remove(
+ Math.abs(requiredOpts.indexOf(key)));

}

Listing 2. Non-trivial equivalent mutant in Options

public Complex pow(double power) {
- double r = abs();
+ double r = abs()+0.0;

double theta = angle();

Listing 3. Trivial equivalent mutant in Complex not found bei TCE(+)

@Override
public Iterator<IndexableField> iterator() {

+ fields.toString();
return fields.iterator();

}

Listing 4. Trivial equivalent mutant in Document not found bei TCE(+)

private int iMax(int a, int b) {
- if (a > b) return a; else return b;
+ if (a >= b) return a; else return b;

}

Listing 5. Trivial equivalent mutant in HSLColor not found bei TCE(+)

if (longOpts.keySet().contains(opt)) {
- return Collections.singletonList(opt);
+ List<String> list = new ArrayList<>();
+ list.add(opt);
+ return list;

}

Listing 6. Mutant difficult to detect in Options

- if (str.startsWith("--")) {
+ if (str.contains("--")) {

return str.substring(2);
}

Listing 7. Mutant difficult to detect in Options



TABLE VIII
RATIO OF EQUIVALENT MUTANTS (EM) IN DUELS IN %

CUT Alias Overall Manual duels Automatic duels

ByteVector 42.42 37.74 61.54
Complex V1 36.11 38.46 40.00
Complex V2 27.12 27.12 –.–
Document 20.92 19.84 28.57
HSLColor 30.00 28.24 29.52
IntHashMap 7.31 6.27 8.72
Lift 33.80 35.84 37.50
Options 5.61 6.29 8.11
Rational 50.00 50.00 –.–
SparseIntArray 20.92 24.28 12.08

Average 27.42 27.41 28.26

inspecting the type using the instanceOf operator. This
mutant is hard to detect, but may not be desirable for mutation
testing since bugs in return types would be caught by the
compiler. On the other hand, Listing 7 shows a mutant that
can only be detected if an incorrect String input is used,
containing a double hyphen somewhere within. This appears
to be a strong and useful mutant since it can reveal potentially
serious bugs in String manipulation.

Summary (RQ 2): In total 5.75% of all player-submitted
mutants are equivalent, which is 6.94% per CUT on average.

C. RQ 3: How well do players perform at detecting (non-)
equivalent mutants?

Of those mutants with involved in equivalent duels, the
proportion of equivalent mutants was always 50% or lower
(Table VIII), which suggests that defenders frequently gave
up, or overestimated the quality of their tests.

On two CUTs (Complex_V2 and Rational) the option
to trigger equivalence duels automatically was disabled and
therefore no automatic duels were triggered. For all other
CUTs, the ratio of equivalent mutants is almost always higher
for automatically triggered duels than for manual ones (Ta-
ble VIII). Defenders, restricted to seeing only the line where
the mutant is located rather than the mutated code itself,
may use many attempts to reveal a mutant, which may be
somewhat unfair if that mutant is equivalent and the defenders
are persistent. The higher ratio of equivalent mutants suggests
that automatically triggering an equivalence duel after several
attempts (10 by default) achieves its purpose of reducing such
futile attempts, thus ensuring continuing gameplay.

When submitting a test in a duel, there are two potential
outcomes: either the test successfully eliminates the mutant
or the mutant survives the tests. About 45% of duels where
attackers submitted a test resulted in the successful elimination
of the mutant, as shown in Table VI. The remaining 55% of
mutants survived, either being equivalent or not. Among these
surviving mutants, 57% were equivalent (37.35% of all duels
resolved with a test), but the attackers failed to recognize that
and tried to write a killing test anyway. Conversely, 43% were
not equivalent (23.65% of all duels resolved with a test), yet
the players still failed to write a killing test.

When attackers assume a mutant is equivalent, then during
a duel they can indicate this by selecting “accept mutant as
equivalent”. Table VI illustrates the number of correctly and
incorrectly accepted equivalent mutants, revealing that only
around 35% were accurately identified as equivalent, while
approximately 65% were mutants that were not equivalent.
This again indicates that the attackers were not proficient at
identifying equivalent mutants, or perhaps they were simply
eager to conclude the duel swiftly to resume mutant creation.

Table VII displays the number of mutants and their propor-
tions categorized based on whether their intention information
was correct, incorrect, or not provided by the player. Notably,
88% of mutants were correctly classified for both classes,
but HSLColor had a slightly higher proportion of incor-
rectly classified mutants compared to ByteVector, which
had more unclassified mutants. Focusing on non-equivalent
mutants within the dataset of mutants with intentions (Ta-
ble VII), players demonstrated proficiency with over 92%
being correctly classified as not equivalent, with an error rate
below 2% for both CUTs. However, for equivalent mutants
within the dataset of mutants with intentions, the ratio of
correct classified intentions by the attackers is 64% and 54%
for ByteVector and HSLColor, respectively, indicating a
lower accuracy than the overall correctness ratio suggests, and
generally more uncertainty about equivalent mutants.

Summary (RQ3): While the majority of players accurately
indicated their intention to create an equivalent mutant or not,
nearly two-thirds of them were unable to correctly identify
equivalent mutants created by other players or themselves.

V. RELATED WORK

Several papers have explored Code Defenders, focusing on
mutants and tests. An analysis of 20 games, each featuring a
different CUT, reports an average mutation score of 69.48%
but does not delve into equivalent mutants [12]. A further
study of 12 classes with multiple games per class, showed that
85% of valid mutants could be detected as killable [11], but
provided only a surface-level overview of player interactions
with equivalence duels. Our study builds on these findings
by leveraging tests from multiple years to identify killable
mutants, revealing that over 91% of valid mutants, on aver-
age, can be detected by these tests. Additionally, a thorough
examination of equivalent mutants is conducted, estimating
the ratio of equivalent mutants per CUT through automatic
equivalence detection and manual investigation of a randomly
sampled subset of remaining unknown mutants.

For automatic equivalent mutant detection, we used TCE [4]
and TCE+ [5]. TCE, originally designed for C programs,
underwent evaluation on a tagged mutant dataset, while TCE+
was evaluated on automatically generated and expert-tagged
mutants. In contrast, this paper employs manually created hu-
man mutants from Code Defenders, not tagging all mutants but
using existing tests to exclude known killable mutants. TCE
was found incapable of detecting Java mutants and reported
TCE+ detecting 18% to 100% of equivalent mutants [5]. In



this study, TCE+ is more effective, but TCE is also capable of
detecting equivalent mutants. However, TCE+ does not detect
over 70% of equivalent mutants for any CUT in this dataset.

People’s proficiency in classifying mutants as equivalent or
not was initially examined using four Cobol programs with
roughly 40% equivalent mutants [28]. Competent program-
mers correctly classified 80% of mutants, misclassifying 12%
killable mutants and 33% equivalent mutants. In contrast, our
intention data involves two programs with a larger number
of people who only classified their own mutants. Results from
this experiment show differences but align with a similar trend:
players classified 88% of mutants correctly while misclassify-
ing 8% of killable and 40% of equivalent mutants.

We studied mutants created manually in Code Defenders.
Deep learning models have been recently suggested to create
mutants that resemble real faults [13]–[15]. It is conceivable
that mutants created by deep learning models resemble human-
written equivalent mutants more than those created by tradi-
tional operators, but further research is required.

VI. CONCLUSIONS

Up to 13% of mutants created by humans are equivalent,
some intentionally crafted and others created by accident. A
substantial share of these equivalent mutants can be found
using TCE+, which is important since human classification of
equivalent mutants is prone to errors, with incorrect identifi-
cation occurring in almost two-thirds of cases.

Expanding the capabilities of Code Defenders presents
opportunities to enhance players’ understanding of equivalent
mutants. One approach might be to incorporate puzzles specif-
ically designed for resolving equivalence duels, educating
players on how to identify equivalent mutants. Additionally, an
option could be introduced in equivalence duels where players
can indicate that a mutant is not equivalent, but they lack the
knowledge to write a test to prove it. A more comprehensive
study involving larger projects could yield deeper insights into
human proficiency in detecting equivalent mutants.

In order to support experiment replications and further
research on mutation testing, our dataset is available at:

https://doi.org/10.6084/m9.figshare.25144313

REFERENCES

[1] G. Petrovic, M. Ivankovic, G. Fraser, and R. Just, “Practical mutation
testing at scale: A view from google,” IEEE Trans. Software Eng.,
vol. 48, no. 10, pp. 3900–3912, 2022.

[2] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11, no. 4,
pp. 34–41, 1978.

[3] A. J. Offutt and W. M. Craft, “Using compiler optimization techniques
to detect equivalent mutants,” Softw. Test. Verification Reliab., vol. 4,
no. 3, pp. 131–154, 1994.

[4] M. Papadakis, Y. Jia, M. Harman, and Y. L. Traon, “Trivial compiler
equivalence: A large scale empirical study of a simple, fast and effective
equivalent mutant detection technique,” in 37th IEEE/ACM International
Conference on Software Engineering, ICSE 2015, pp. 936–946, IEEE
Computer Society, 2015.

[5] M. Houshmand and S. Paydar, “TCE+: an extension of the TCE method
for detecting equivalent mutants in java programs,” in Fundamentals
of Software Engineering - 7th International Conference, FSEN 2017,
vol. 10522 of LNCS, pp. 164–179, Springer, 2017.

[6] M. R. Naeem, T. Lin, H. Naeem, and H. Liu, “A machine learning
approach for classification of equivalent mutants,” Journal of Software:
Evolution and Process, vol. 32, no. 5, p. e2238, 2020.

[7] D. Schuler and A. Zeller, “Covering and uncovering equivalent mutants,”
Softw. Test. Verification Reliab., vol. 23, no. 5, pp. 353–374, 2013.

[8] I. Marsit, A. Ayad, D. Kim, M. Latif, J. M. Loh, M. N. Omri, and
A. Mili, “The ratio of equivalent mutants: A key to analyzing mutation
equivalence,” J. Syst. Softw., vol. 181, p. 111039, 2021.

[9] R. Pitts, “Random mutant selection and equivalent mutants revisited,”
in IEEE International Conference on Software Testing, Verification and
Validation Workshops ICST Workshops 2022, pp. 170–178, IEEE, 2022.

[10] J. M. Rojas and G. Fraser, “Code defenders: A mutation testing game,”
in Int. Conference on Software Testing, Verification and Validation
Workshops, pp. 162–167, IEEE Computer Society, 2016.

[11] G. Fraser, A. Gambi, M. Kreis, and J. M. Rojas, “Gamifying a software
testing course with code defenders,” in ACM Technical Symposium on
Computer Science Education, SIGCSE 2019, pp. 571–577, ACM, 2019.

[12] J. M. Rojas, T. D. White, B. S. Clegg, and G. Fraser, “Code defenders:
crowdsourcing effective tests and subtle mutants with a mutation testing
game,” in Proceedings of the 39th International Conference on Software
Engineering, ICSE 2017, pp. 677–688, IEEE / ACM, 2017.

[13] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and
D. Poshyvanyk, “Learning how to mutate source code from bug-fixes,”
in 2019 IEEE International Conference on Software Maintenance and
Evolution, ICSME 2019, pp. 301–312, IEEE, 2019.

[14] M. Tufano, J. Kimko, S. Wang, C. Watson, G. Bavota, M. D. Penta, and
D. Poshyvanyk, “Deepmutation: a neural mutation tool,” in International
Conference on Software Engineering, pp. 29–32, ACM, 2020.

[15] R. Degiovanni and M. Papadakis, “µbert: Mutation testing using pre-
trained language models,” in Int. Conf. on Software Testing, Verification
and Validation Workshops (ICSTW), pp. 160–169, IEEE, 2022.

[16] T. A. Budd, R. J. Lipton, R. A. DeMillo, and F. G. Sayward, “The design
of a prototype mutation system for program testing,” in American Fed-
eration of Information Processing Societies: 1978 National Computer
Conference, vol. 47, pp. 623–629, AFIPS Press, 1978.

[17] P. J. Walsh, A measure of test case completeness (software, engineering).
State University of New York at Binghamton, 1985.

[18] T. A. Budd and D. Angluin, “Two notions of correctness and their
relation to testing,” Acta Informatica, vol. 18, pp. 31–45, 1982.

[19] X. Yao, M. Harman, and Y. Jia, “A study of equivalent and stubborn
mutation operators using human analysis of equivalence,” in Int. Con-
ference on Software Engineering (ICSE), pp. 919–930, 2014.

[20] J. Zhang, Z. Wang, L. Zhang, D. Hao, L. Zang, S. Cheng, and L. Zhang,
“Predictive mutation testing,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, pp. 342–353, 2016.

[21] S. Peacock, L. Deng, J. Dehlinger, and S. Chakraborty, “Automatic
equivalent mutants classification using abstract syntax tree neural net-
works,” in 2021 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), pp. 13–18, IEEE, 2021.

[22] C. Brito, V. H. Durelli, R. S. Durelli, S. R. de Souza, A. M. Vincenzi,
and M. E. Delamaro, “A preliminary investigation into using machine
learning algorithms to identify minimal and equivalent mutants,” in 2020
IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pp. 304–313, IEEE, 2020.

[23] K. Jammalamadaka and N. Parveen, “Equivalent mutant identification
using hybrid wavelet convolutional rain optimization,” Software: Prac-
tice and Experience, vol. 52, no. 2, pp. 576–593, 2022.

[24] L. van Hijfte and A. Oprescu, “Mutantbench: an equivalent mutant
problem comparison framework,” in Int. Conference on Software esting,
Verification and Validation Workshops (ICSTW), pp. 7–12, IEEE, 2021.

[25] S. Chung and S. Yoo, “Augmenting equivalent mutant dataset using
symbolic execution,” in Int. Conference on Software Testing, Verification
and Validation Workshops (ICSTW), pp. 150–159, IEEE, 2022.

[26] S. G. Elbaum, S. Person, J. Dokulil, and M. Jorde, “Bug hunt: Making
early software testing lessons engaging and affordable,” in 29th Interna-
tional Conference on Software Engineering (ICSE 2007), pp. 688–697,
IEEE Computer Society, 2007.

[27] R. A. P. Oliveira, L. B. R. Oliveira, B. B. P. Cafeo, and V. H. S.
Durelli, “Evaluation and assessment of effects on exploring mutation
testing in programming courses,” in 2015 IEEE Frontiers in Education
Conference, FIE 2015, pp. 1–9, IEEE Computer Society, 2015.

[28] A. T. Acree Jr, On mutation. Georgia Institute of Technology, 1980.

https://doi.org/10.6084/m9.figshare.25144313

	Introduction
	Background
	Mutation Testing
	Equivalent Mutants
	Code Defenders
	Game Modes
	Testing
	Mutation
	Intent Collection
	Equivalence Duels


	Evaluation
	Dataset
	Analysis Procedure
	RQ 1: How well does TCE(+) perform on manually written mutants
	RQ 2: How many equivalent mutants do players of Code Defenders create?
	RQ 3: How well do players perform at detecting (non-) equivalent mutants

	Threats to Validity

	Results
	RQ 1: How many equivalent mutants are detected automatically?
	RQ 2: How many equivalent mutants do players of Code Defenders create?
	RQ 3: How well do players perform at detecting (non-) equivalent mutants?

	Related Work
	Conclusions
	References

