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Abstract—Writing good software tests is difficult and not
every developer’s favorite occupation. Mutation testing aims to
help by seeding artificial faults (mutants) that good tests should
identify, and test generation tools help by providing automatically
generated tests. However, mutation tools tend to produce huge
numbers of mutants, many of which are trivial, redundant, or
semantically equivalent to the original program; automated test
generation tools tend to produce tests that achieve good code
coverage, but are otherwise weak and have no clear purpose.
In this paper, we present an approach based on gamification
and crowdsourcing to produce better software tests and mutants:
The CODE DEFENDERS web-based game lets teams of players
compete over a program, where attackers try to create subtle
mutants, which the defenders try to counter by writing strong
tests. Experiments in controlled and crowdsourced scenarios
reveal that writing tests as part of the game is more enjoyable,
and that playing CODE DEFENDERS results in stronger test suites
and mutants than those produced by automated tools.

I. INTRODUCTION

Software needs to be thoroughly tested in order to remove
bugs. To evaluate how thoroughly a program has been tested,
the idea of mutation testing is to measure the number of seeded
artificial bugs (mutants) a test suite can distinguish from the
original program. Testers can then be guided to improve test
suites by writing new tests that target previously undetected
mutants. In contrast to more basic code coverage criteria such
as statement coverage [21], the ability of a test suite to detect
mutants is correlated with detecting real faults [24].

However, writing good tests is difficult and developers are
often reluctant to do so [6]. They are even less likely to write
tests for mutants: Mutation tools tend to produce huge amounts
of mutants, and many of these mutants are trivial or redundant,
and sometimes even semantically equivalent to the original
program, in which case time spent trying to write a test is time
wasted. One possible solution lies in also generating the tests
automatically, but humans tend to write tests that are stronger,
have a clear meaning, and are typically more readable.

The difficulties of writing good tests and using automated
mutation tools are similar in nature to those generally targeted
by gamification and crowdsourcing: Gamification [12] is the
approach of converting tasks to components of entertaining
gameplay. The competitive nature of humans is exploited to
motivate them to compete and excel at these activities by
applying their creativity. Crowdsourcing is a problem solving
strategy [20] where a difficult problem is encoded and assigned
to an undefined group of workers (the crowd), who provide

their solutions back to the requester; the requester then derives
the final solution from the solutions collected from the workers,
who are usually rewarded, e.g., with cash or prizes.

In this paper, we describe an approach to generate good
software tests and mutants using gamification and crowdsourc-
ing with the CODE DEFENDERS game. Testing activities are
gamified by having players compete over a program under
test: Attackers try to create subtle, hard to kill mutants, while
defenders try to create tests that can detect and counter these
attacks. In order to crowdsource sets of good tests and mutants,
CODE DEFENDERS is played as a multi-player game, where
teams of attackers and defenders compete to defeat the opposing
team, and to score the most points within their own team.

In detail, the contributions of this paper are as follows:

• We introduce the CODE DEFENDERS multi-player game, its
players’ actions, and its balanced scoring system aiming to
make the gameplay enjoyable for both player roles.

• We evaluate the gamification aspects of CODE DEFENDERS
and present the results of a controlled study comparing it to
traditional unit testing in terms of the objective performance
and subjective perception of 41 participants.

• We evaluate the application of CODE DEFENDERS in a
crowdsourcing scenario and present the results of 20 multi-
player games played on open source classes, comparing the
tests and mutants to those generated by automated tools.

All participants of our experiments confirmed that playing
the game is fun, and that writing tests as part of CODE
DEFENDERS is more enjoyable than doing so outside the
game. Code coverage and mutation scores are higher compared
to tests (a) written outside the game and (b) generated by
automated tools (on average, 28% higher mutation score
than Randoop [29], and 25% higher mutation score than
EvoSuite [16]). Mutants created by attackers are significantly
harder to kill than those created by the Major mutation tool [22].

In this paper, we target the crowdsourcing aspect of CODE
DEFENDERS; however, the game is also naturally suited for
educational purposes. Our initial findings for educational appli-
cations are documented elsewhere [36]. To support educational
use, CODE DEFENDERS also provides a single-player mode,
where players compete against an automated attacker (the Major
mutation tool) or an automated defender (the EvoSuite test
generation tool), and a two-player mode. We have made CODE
DEFENDERS open-source and freely available to play online
at http://www.code-defenders.org.

http://www.code-defenders.org


II. BACKGROUND

A. Unit Test Generation

Developers frequently execute unit tests to guard their
programs against software bugs. As writing a good test suite
can be difficult and tedious, there is a range of different tools
to support this activity by automatically generating tests.

A basic approach to generating tests is to do so randomly.
For example, Randoop [29] is a mature test generation tool
for Java that produces random sequences of calls for a given
list of classes; violations of code contracts are reported as
bugs, and tests that do not reveal bugs are equipped with
regression oracles that capture the current program state for
regression testing. Because random test generation tends to
result in very large test suites and may struggle to cover corner
cases, search-based testing has been suggested as an alternative.
For example, EvoSuite [16] generates test suites using a
genetic algorithm which aims to maximize code coverage. Test
suites are minimized with respect to the target criteria, thus
resulting in far fewer tests than random testing would produce.
Approaches based on symbolic execution can be effective for
certain types of problems that are particularly amenable to the
power of modern constraint solvers. For example, EvoSuite
implements an experimental extension [18] that uses dynamic
symbolic execution to generate primitive input values, and the
Pex [45] tool uses dynamic symbolic execution to instantiate
parameterized unit tests for C#.

The annual unit test generation tool competition [38]
compares different unit test generation tools for Java, and
although tools have made substantial progress in recent years,
there remain several challenges. Xusheng et al. [51] identify
different challenges that hinder test generation tools in reaching
code (e.g., object mutation, complex constraints, etc.), and
Shamshiri et al. [41] identified several problems that hinder
automatically generated unit tests from finding real faults.
Pavlov and Fraser [33] demonstrated that some of these can
be overcome by including human intelligence by using an
interactive genetic algorithm in the EvoSuite tool.

B. Mutation Testing

In order to evaluate test suites and to guide selection of new
tests, mutation testing has been proposed as an alternative to
traditional code coverage metrics. Mutation testing consists
of seeding artificial faults (“mutants”) in a program, and then
measuring how many of them are found (“killed”) by the test
suite. The mutation score, i.e., the ratio of mutants killed,
provides an indication of the test suite quality, while mutants
that remain “alive” provide hints on where to add new tests.
There is evidence [2, 24] that test suites that are good at finding
mutants are also good at finding real faults.

One of the main advantages of mutation testing over code
coverage is that code coverage does not consider the quality
of test oracles, i.e., how the correctness of the test execution is
checked. However, the practical application of mutation testing
is hindered by two significant problems: First, non-trivial code
results in large numbers of mutants. Mutants are generated

using different mutation operators, which systematically per-
form simple modifications (e.g., replace an operator), and each
application of an operator results in a new mutant. Despite many
efforts to reduce the number of mutants produced (e.g., [23])
the number remains large, which is not only a problem for
scalability, but also because many mutants are either trivial or
subsumed by other mutants [30].

The second problem is that some mutants are semantically
equivalent to the original program, such that there exists no
killing test. Detecting equivalent mutants is an undecidable
problem [8, 28], and effort on trying to derive such a test
is likely wasted. Different techniques and systems have been
developed to detect equivalent mutants (e.g., [1, 31, 40]), but
they are generally limited to certain types of mutants. Thus,
human intervention is still required to discern hard-to-kill (or
“stubborn”) mutants from equivalent ones [52].

One insight underlying this paper is that these two main
problems of mutation testing, designing good mutants and de-
ciding equivalence, both require human intelligence. This leads
us to investigate the use of gamification and crowdsourcing.

C. Crowdsourcing and Gamification

Problems that are hard to solve computationally but can
be effectively solved by humans can be amenable to crowd-
sourcing [20]. The general principle is to identify and extract
tasks that require human intelligence, and then to present these
“human intelligence tasks” to “crowd workers”. Additional
computational effort is usually necessary to assemble the
individual task solutions to solve the overall problem. In
software engineering, crowdsourcing platforms such as Amazon
Mechanical Turk, where crowd workers are paid small fees for
completed tasks, are often used for empirical studies [43], but
there are attempts to crowdsource various parts of the software
development process [26].

Gamification uses game design elements (competitions with
other players, game rules, point scoring, fantasy scenarios,
etc.) to make unpleasant or dull tasks more entertaining and
rewarding [12]. It is often applied in education settings, but has
also been useful for improving how people engage with aspects
of their work, even in software engineering [34]. A particular
form of gamification are “games with a purpose”, where
players of the game solve underlying computational problems
(sometimes without being aware of this). In other words, games
with a purpose are a form of crowdsourcing, where the incentive
for workers is provided in terms of the gameplay. Famous
examples include ReCaptcha [49] or DuoLingo [48].

III. THE CODE DEFENDERS GAME

A. Gameplay

CODE DEFENDERS is a competitive game where two teams
compete over a Java class under test (CUT) and its test suite;
one team leads an “attack” on the CUT, whereas the other
team tries to defend it. Attackers aim to create variants of the
CUT, i.e., mutants, with which they “attack” the fault-detection
capability of the associated test suite. Defenders aim to protect
the CUT by writing unit tests that detect, i.e., kill the mutants.
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Fig. 1: The Attacker’s View.

Fig. 2: The Defender’s View.

Two difficulty levels are available in the game. In the easy
level, attackers and defenders see all submitted mutants and
tests. In the default hard level, the information presented to
players is restricted to balance the gameplay and make it more
interesting for both roles. Attackers have a code editor where
they create mutants by modifying the CUT (Figure 1). They
see all mutants in the game including their code diffs, and the
code editor highlights the line coverage achieved by the tests
submitted to the game so far. The highlighting reflects how
often lines are covered; the more often a line is covered, the
darker the highlighting is. Defenders (Figure 2) see the source
code of the CUT together with the locations of live and dead
mutants. In their code editor, they are given a template to write
a unit test for the CUT, and they also see previous tests as
well as their coverage. Unlike the round-based gameplay of
our preliminary version of CODE DEFENDERS [35], attackers
and defenders can submit mutants and tests at any time and
do not need to wait for other players to act.

Fig. 3: The Equivalence Duel View.

B. Equivalence Duels

The mutants that attackers create in the game may be
equivalent, whether on purpose or not. The gameplay integrates
duels that allow players to decide on equivalent mutants. If
a defender suspects a mutant to be equivalent, for example
because the mutant is still alive after several failed attempts
at killing it, then he/she can challenge the attacker by starting
an equivalence duel. The onus is then on the attacker either to
write a test that kills the mutant, proving it is not equivalent,
or to confirm that the mutant is indeed equivalent (Figure 3).

C. The Multiplayer Scoring System

The point scoring system is based on assigning each mutant
and test a number of points that can change as the game unfolds.
In particular, mutant points are calculated as follows:

• If a mutant is killed by an existing test when it is created
(i.e., a stillborn mutant), then it receives no points.

• A mutant gains a point for every test that covers any of
the mutated lines but still passes. Thus, surviving mutants
created on heavily tested lines, although risky, will result
in more points.

• If a mutant is created and not killed by any existing tests,
then it receives one point (in addition to points gained from
tests that cover it but do not fail). This is to encourage
creation of mutants also for code not yet covered by tests.

• Once a mutant is killed, its score is no longer increased.
Test points are calculated as follows:

• For each mutant that a test kills, the test gains points
equal to the score of the mutant plus one. This applies
to mutants that already existed at the time the test was
created, as well as mutants added to the game later.

• A test gains one point for killing a newly created mutant.
• When a mutant is submitted, tests are executed in the

order of their creation. Thus, the oldest test that kills a
mutant receives the point, and no other tests receive points
for the same mutant.

The score of an attacker is the sum of the points of her
mutants; the score of a defender is the sum of the points of
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her tests. Equivalence duels can update both players’ scores:
If a defender claims a mutant as equivalent but the attacker
proves non-equivalence with a test, then the attacker keeps
the mutant’s points and the mutant is killed. However, if the
attacker accepts that the mutant is equivalent, or the game ends,
then she loses all the points she scored with that mutant and the
defender who had claimed equivalence gains one point. While
an equivalence duel is active, the mutant remains alive and can
be killed by other defenders (which would cancel the duel); the
mutant can still gain points for surviving newly submitted tests
until the equivalence duel is resolved. If the attacker submits
a test which compiles but fails to kill the mutant, they lose
the duel and the mutant is assumed equivalent. An elaborate
example of the scoring system can be found on the CODE
DEFENDERS webpage.

One potential issue with the scoring system is that in the
last few minutes of a game, a defender could flag all mutants
as equivalent leaving no time for attackers to resolve the
equivalence; this would mean that all mutants are penalized and
lose their points. Similarly, attackers could submit equivalent
mutants in the last few minutes, leaving defenders no time to
react. We prevent this from happening by introducing a grace
period of configurable duration at the end of each game (e.g.,
one hour). In this grace period, no new mutants or defender
tests can be submitted. in the first part of the grace period
(e.g., 15 min.) defenders can flag mutants as equivalent while
attackers wait; the remaining time of the grace period can only
be used by attackers to resolve pending equivalence duels.

D. Code Editing Restrictions

Whenever humans engage in competitive games, there is
the possibility of cheating and unfair behaviour, and this also
holds in gamified software engineering tasks [14]. In particular,
once players understand the scoring system, there will likely be
some players who try to create mutants or tests in a way that
benefits their score without providing a useful improvement
in terms of the mutants or tests generated in the game. For
example, an attacker could add an if-condition of the type
if(x == 2355235) which could only be killed by a test
that happens to use the arbitrary input data 2355235 – which is
very unlikely. This mutant would increase the attacker’s score,
but it may misdirect the effort of the defenders and likely does
not resemble a real fault.

To reduce the possibility of such behaviour, we implemented
a number of restrictions on the modifications that attackers can
perform, and the tests that defenders can create. In particular,
the following restrictions apply when creating tests and mutants:

• Conditionals, loops, boolean operators and method defi-
nitions cannot be added. This prevents too-complex tests and
mutants which are near impossible for defenders to kill, but
easy for an attacker to prove non-equivalent (example above).

• Calls to java.util.System.* cannot be added: This
is to restrict access to system information (e.g., environment
variables) and to prevent executing unsafe operations (e.g.,
calls to System.exit). Security is enforced by executing
all tests in a sandbox using a strict security manager.

• Calls to java.util.Random cannot be added to avoid
flaky tests or impossible to kill mutants.

• Tests must contain at most two assertions: This prevents
defenders from writing unit tests with “mega”-assertions, which
not only is a bad unit testing practice but could also damage the
gameplay (e.g., by discouraging other defenders and reducing
points of surviving mutants).

IV. DOES GAMIFICATION IMPROVE TESTING?

Before evaluating the applicability of CODE DEFENDERS as
a crowdsourcing solution for test generation, we investigated
its general feasibility as a gamification approach to software
testing. To this end, we used the two-player version [35],
where one attacker plays against one defender in a round-based
mode, and designed a controlled empirical study to answer the
following research questions:
RQ1: Do testers produce better tests when playing a game?
RQ2: Do testers prefer writing tests while playing a game?

A. Experiment Setup

We conducted this controlled study in a computer lab at
the University of Sheffield. We invited undergraduate and
postgraduate students, researchers and professional developers
by email. Student candidates were required to have completed
at least one Java course in their degree and all candidates
were asked to complete an online Java qualification quiz to
demonstrate their Java skills. We selected all 41 candidates
who answered at least 3 out of the 5 questions correctly. 52%
of the participants were undergraduate students, 37% were
Master’s or PhD students and the rest were either professional
developers or academics. All participants were in Computer
Science or Software Engineering-related fields, had a diverse
degree of experience programming in Java but generally little or
no industrial work experience (66%). The majority (76%) had
used JUnit or a similar testing framework before and understood
well or very well the concept and usage of mutation testing,
although most admitted to only rarely or occasionally writing
unit tests when programming.

Prior to the experiment, participants attended a training
session consisting of a brief tutorial on unit and mutation testing
and an introduction to CODE DEFENDERS. They familiarized
themselves with the web interface of the game through short,
guided tasks. To conclude the training session, all participants
played an actual CODE DEFENDERS game on a simple class.
When asked in the exit survey whether they understood the
gameplay, only 3 participants partially disagreed and 3 further
participants neither agreed nor disagreed.

The actual experiment consisted of two 30-minute tasks per
participant. The three possible tasks were: (1) Writing unit tests
manually; (2) playing CODE DEFENDERS as an attacker; or
(3) playing CODE DEFENDERS as a defender. We selected two
classes under test: SortedIntegerList, a standard implementation
of a data structure for sorted list of integers, and IBAN, a
validator for International Banking Account Numbers from
the swift-wife open source project. Each participant performed
one task on each of the two classes. The manual testing tasks
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serve as the baseline of regular testing behavior and were
also performed using the CODE DEFENDERS web interface;
we asked participants to test the class as well as possible to
guard against potential faults, but we did not explicitly ask
them to optimize for coverage or other metrics. A pre-created
assignment determined the two tasks for each participant. The
assignment was designed to balance tasks for the two classes,
the order in which participants performed each task, and the
order in which participants played as attackers or defenders for
each class. The assignment further ensured that the attacker
and the defender in each game did not sit next to each other.
Participants were randomly assigned usernames based on the
assignment and did not get to know who they were playing
against. The experiment, including training, lasted two hours,
and each participant was paid GBP20 for their involvement.

In total, 28 games were played and 26 manual testing tasks
were completed. On average, each game lasted 3.8 rounds, and
a total of 72 valid unit tests were produced by the game players.
Manual testers were not bound to the round-based setting of the
game, and produced 93 valid tests (a test is valid if it compiles
and passes on the original class under test). To answer RQ1, we
compare the tests written by participants playing as defenders
with tests written by participants doing manual (unguided)
unit testing. We measure the standard quality attributes of
code coverage and mutation scores using Jacoco1 to measure
coverage, and Major [22] to calculate mutation scores.

After the experiment, all participants were asked to fill out an
exit survey which consisted of standard demographic questions,
10 questions of agreement on aspects of the gameplay with
5-value Likert-scale responses, 8 questions where we asked
users to state their agreement with possible improvements, and
free-text questions to comment on the user interface, the point
scoring system, and the overall game. To answer RQ2, we use
the data on five questions that directly asked the participants
whether they preferred playing the game to writing tests.

B. Threats to Validity

Construct: We used mutation scores and branch coverage
to compare tests, but it may be that other quality attributes
(e.g., readability) are affected by the gameplay. We countered
this threat by adding restrictions on the tests (e.g., maximum
number of assertions). While evidence supports that real faults
are correlated with mutants [2, 24], it is possible that the use
of faults created by developers may yield different results.

Internal: To prepare the study and to process the results
we used automation extensively, and faults in the automation
may have an influence on the results of the study. To counter
this threat, we tested all our software, and make all data and
scripts available. To avoid bias we assigned tasks to participants
randomly, based on a pre-created balanced assignment. This
assignment ensures that no two neighbouring participants
would work on the same class or treatment at the same time.
Participants without sufficient knowledge of Java and JUnit
may affect the results; therefore, we only accepted participants

1http://www.eclemma.org/jacoco, accessed August 2016

●●

Manual Code Def.

1
2

3
4

5
6

7

(a) Number of Tests

●
●

Manual Code Def.

0.
0

0.
2

0.
4

0.
6

0.
8

(b) Branch Cov.

●

●

●

●

Manual Code Def.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

(c) Mutation Score

Fig. 4: Boxplots comparing the number of tests created, branch
coverage and mutation scores achieved when using Code
Defenders vs manual testing (Means indicated with red dots).

who correctly answered at least three out of five question
of a qualification quiz. We also provided a tutorial on unit
and mutation testing before the experiment. To ensure that
experiment objectives are not unclear we tested and revised our
material on a pilot study with PhD students. We also interacted
with the participants throughout the experiment to ensure they
understood their tasks; in the exit survey participants confirmed
they understood the objectives.

As each participant performed two tasks, it is possible
that those playing as a defender in the first session could
grasp insight on how tests should be written to kill mutants if
they are given manual testing as their second task. To lessen
the impact of this learning effect, our assignment of objects
to participants ensures that each pair of classes/treatments
occurs in all possible orders. To counter fatigue effects we
restricted the tasks to 30 minutes, included short breaks after the
training session and between the two main sessions, and also
provided light refreshments. In order to minimize participants’
communication, we imposed exam conditions and explicitly
asked participants not to exchange information or discuss
experiment details during the breaks.

External: Most participants of our study are students, which
is a much debated topic in the literature (e.g., [9, 19]). However,
we draw no conclusions from absolute performance, and see no
reason why students’ experience of playing CODE DEFENDERS
should be different from other types of players. The classes
used in the experiment are small to allow understanding and
testing within the short duration of the experiment. Although
object oriented classes are often small, it may be that larger
classes with more dependencies affect the gameplay. Thus,
to which extent our findings can be generalized to arbitrary
classes remains an open question.

C. Results

RQ1: Do testers produce better tests when playing a game?
Figure 4(a) shows that participants performing the manual
testing task wrote more tests than participants playing CODE
DEFENDERS as defenders; this is expected as the two-player
mode is turn-based, and after submitting a test defenders have
to wait for the attacker to create a new mutant. Figure 4(b)
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Fig. 5: Exit survey results

compares the resulting test suites in terms of branch coverage,
measured with Jacoco. Interestingly, the branch coverage
achieved by these tests is nevertheless similar (Mann-Whitney
U test with p = 0.81, Vargha-Delaney effect size of Ā12 = 0.52,
where Ā12 = 0.5 means there is no difference, and Ā12 > 0.5
means higher values for game players): On average, the tests
written by CODE DEFENDERS players achieved 34.3% branch
coverage, while manual testers achieved 34.7%. In terms of
mutation score (Figure 4(c)) the tests written by players are
clearly stronger, with an average mutation score of 23.1% vs.
15.5% for tests written by manual testers. The difference in
mutation score is statistically significant (Ā12 = 0.68, p =0.03).

RQ1: In our experiment, participants playing CODE
DEFENDERS wrote stronger tests than those not playing.

RQ2: Do testers prefer writing tests while playing a game?
For space reasons we cannot provide the complete survey
results. To answer RQ2, we focus on the level of agreement
expressed by the participants of the experiment with the
following five statements: (i) I enjoyed playing Code Defenders;
(ii) I enjoy writing tests even when it is not part of a game;
(iii) Writing unit tests as part of the game is more fun
than writing unit tests while coding; (iv) Creating mutants
is more fun than writing tests; (v) I would consider playing
Code Defenders for fun. Data on all other questions (most
of which are related to the game experience and possible
improvements) is available at http://study.code-defenders.org.
Figure 5 shows that all participants enjoyed playing the game.
60% at least partially agree that writing tests in general can be
fun, but all participants agree that writing tests was more fun as
part of CODE DEFENDERS. All but 3 participants also claimed
they would consider playing CODE DEFENDERS again. Overall,
these responses indicate that the testing task is more engaging
for participants when performed in a gamified scenario.

RQ2: Participants of our experiments claim they enjoyed
writing tests more when playing CODE DEFENDERS.

Figure 5 also shows a strong tendency that creating mutants
is more enjoyable than creating tests. This is not surprising;
however, the short duration of the game did not allow many
equivalence duels to take place, in which case the attacker
also has to write tests. The answers to the survey suggested
a range of improvements to game, mainly related to the user
interface and the point scoring system, which we considered

when designing the multi-player version of CODE DEFENDERS.

V. CAN WE CROWDSOURCE TESTS AND MUTANTS?

Having established that players engage well with CODE
DEFENDERS and produce useful tests, the question now is
whether we can make use of the game and apply it in
a crowdsourcing scenario, where multiple players compete
and deliver good test suites and mutants. To this end, we
implemented the multi-player version of CODE DEFENDERS
described in this paper, and collected data from a number of
games in order to answer the following research questions:

RQ3: Does crowdsourcing lead to stronger test suites than
automated test generation?

RQ4: Does crowdsourcing lead to stronger mutants than
automatically generated mutants?

RQ5: Do mutation scores on crowdsourced mutants correlate
with mutation scores on traditional mutants?

A. Experiment setup

We followed a systematic procedure to select 20 classes from
the SF110 [17] repository, which consists of randomly sampled
SourceForge projects as well as the top ten most popular ones,
and the Apache Commons (AC) libraries [44]. First, because
CODE DEFENDERS currently lacks support for browsing source
code trees, we selected classes which compile in isolation (i.e.,
no dependencies). Next, we restricted the search by size and
identified all classes with 100–300 non-commenting lines of
code2. Our experience from previous user studies suggests that
classes in this size range tend to be suitable for experimental
unit testing tasks [37]. These two automated filters narrowed
the search down to 169 classes (57 from AC and 112 from
SF110), which were then manually ranked by: complexity (e.g.,
does the class implement interesting logic?), purpose (e.g., is
the class understandable without context?) and testability (e.g.,
does the class contain public observers?). Finally, twenty of the
top ranked classes were selected while preserving some domain
diversity. Table I lists the selected classes, the projects they
belong to, their size (in NCSS), and the number of mutants
created by Major (as an indicator of complexity).

Twenty games were then scheduled over the course of 15
days, one per selected class. Participants of the first study were
invited to play the games, and the invitation was extended to
academic and industrial contacts via direct emails, email lists
and social media. In total, 35 unique participants signed up
and took part in at least one game. Participants were free to
chose which games to play and which team to join in each
game (attackers or defenders). In order to start, at least three
attackers and three defenders were required and at most five
players could join each team. Games started on their scheduled
date and time, or were delayed until the minimum number of
players was met, and lasted for 24 hours from its starting time.
As incentive to play, the best attacker and defender in each
game were awarded GBP10 in shopping vouchers.

2Measured by JavaNCSS (https://github.com/codehaus/javancss)
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TABLE I: Classes selected for crowdsourcing experiment.

Class Project NCSS Major Mutants

ByteArrayHashMap sf-vuze 179 174
ByteVector sf-jiprof 128 311
ChunkedLongArray sf-summa 102 230
FTPFile ac-net 158 111
FontInfo sf-squirrel-sql 104 66
HierarchyPropertyParser∗ sf-weka 261 286
HSLColor sf-vuze 160 651
ImprovedStreamTokenizer∗ sf-caloriecount 128 111
ImprovedTokenizer sf-caloriecount 163 77
Inflection sf-schemaspy 112 105
IntHashMap sf-vuze 113 145
ParameterParser ac-fileupload 108 172
Range ac-lang3 128 158
RationalNumber ac-imaging 108 286
SubjectParser sf-newzgrabber 117 136
TimeStamp ac-net 103 209
VCardBean sf-heal 188 184
WeakHashtable ac-logging 168 93
XmlElement sf-inspirento 196 166
XMLParser sf-fim1 162 76
∗ Hereinafter abbreviated HPropertyParser and IStreamTokenizer.

Each game resulted in a set of mutants and a test suite
containing all tests created in the game. To answer RQ3,
we compared these test suites with automatically generated
test suites in terms of branch coverage (using Jacoco) and
mutation score (using Major). We chose EvoSuite and Randoop
as representatives of state-of-the-art test generation tools for
Java [38] and ran them with default configurations and a one
minute time budget to generate 30 test suites per class per tool
(to account for the randomized algorithms they implement).

To answer RQ4, we measured how difficult the mutants
produced in CODE DEFENDERS are compared to mutants
generated by using a mutation testing tool. We calculated
the number of random tests that kill each mutant; intuitively,
the fewer random tests kill a mutant, the harder it is to kill. To
produce these random tests, we run Randoop on each game
class to generate one single test suite with up to 1,000 random
tests with a 10-minute time budget. We then executed each of
these tests individually on all the mutants generated by Major
and on all the mutants created in CODE DEFENDERS, counting
the number of tests that killed each mutant.

Finally, to answer RQ5, we calculated the mutation scores
of the test suites generated for RQ3 and RQ4 on all Major
mutants as well as all mutants generated in the game, and
investigated the correlation between these scores.

B. Threats to validity

Threats to validity caused by our object selection, automation,
and metrics are similar to what is described in Section IV-B.

The crowdsourcing nature of this second experiment affects
the participant selection. We advertised the experiment among
the participants of our first study as well as standard email
channels and social media; 17 participants of the original study
took part, and 18 new external participants were recruited.
External participants did not receive the same training partici-
pants of the first study received, but instead learned about the
game purely from the help page on the website and by playing
practice games on their own. It is possible that in practice

TABLE II: Details of the 20 multi-player games played.

Class Att. Def. Mut. Tests Killed Equiv. Score (A-D)

ByteArrayHashMap 5 4 126 46 73 0 877 - 206
ByteVector 4 3 57 55 44 0 136 - 90
ChunkedLongArray 5 5 94 16 41 8 583 - 77
FontInfo 3 3 33 68 26 1 14 - 50
FTPFile 4 4 34 66 29 0 31 - 52
HPropertyParser 3 4 66 23 53 1 178 - 174
HSLColor 5 5 50 15 33 2 18 - 68
IStreamTokenizer 5 3 83 32 73 5 221 - 252
ImprovedTokenizer 5 3 129 26 107 2 346 - 348
Inflection 4 3 13 26 9 1 65 - 56
IntHashMap 4 4 71 83 45 2 742 - 201
ParameterParser 4 4 68 47 45 0 678 - 117
Range 4 3 154 35 114 1 232 - 226
RationalNumber 3 5 60 54 32 6 242 - 117
SubjectParser 4 5 28 17 14 2 40 - 16
TimeStamp 4 4 32 15 31 0 32 - 50
VCardBean 4 4 174 123 141 7 501 - 923
WeakHashtable 3 4 41 11 9 0 50 - 40
XmlElement 4 3 177 49 134 4 315 - 372
XMLParser 4 5 27 24 21 1 50 - 90

Mean 4.05 3.90 41.55 75.85 53.70 2.15

participants may have more diverse qualifications and skills.
However, the multi-player nature of the game means that the
results are not dependent on the skills of individual players, and
remuneration based on contribution would pose no financial
risk to including worse players. Nevertheless, finding qualified
participants is a general concern in crowdsourcing and requires
careful planning of incentives. Participants chose the games
and their roles without our influence. All classes originate
from open source projects; to prevent players searching for
existing tests for them, we anonymized all classes by removing
all project-specific details, including package declarations. As
games were run in sequence and participants were allowed
to join more than one game, there may be learning effects
between games. To reduce these effects, we only ran one game
per class, which avoids learning effects on the CUTs.

The test suites produced in the game are compared against
those produced by Randoop and EvoSuite using default
configurations with bounded time. Although the time spent by
players in the game is not directly comparable to the running
time of the tools, it is possible that using larger time budgets or
fine-tuned parameters would improve their test suites. However,
beyond running time, there are fundamental limitations in the
tools [33, 41, 51] that our approach aims to overcome.

C. Results

Table II summarizes the 20 games that were played. On
average, there were 4.05 attackers, submitting a mean of 75.85
mutants. The average number of defenders was 3.9, submitting
a mean of 41.55 tests per game. Out of the 20 games, 12 were
won by the defending teams and 8 by the attacking teams,
suggesting that overall the scoring is well balanced.

RQ3: Does crowdsourcing lead to stronger test suites than
automated test generation? Table III compares the tests written
by players of CODE DEFENDERS with those generated with
Randoop and EvoSuite. On average, the CODE DEFENDERS
test suites achieved 89.03% branch coverage, whereas Randoop
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TABLE III: Comparison of test suites generated with CODE DEFENDERS with automatically generated test suites (bold font
represents cases with statistically significant difference at p < 0.05.

Class Branch Coverage Mutation Score (Major) Mutation Score (Code Defenders)
Code D. Randoop EvoSuite Code D. Randoop EvoSuite Code D. Randoop EvoSuite

Cov. A12 Cov. A12 Score A12 Score A12 Score A12 Score A12

ByteArrayHashMap 86.49% 78.02% 0.97 33.69% 1.00 67.82% 50.85% 1.00 49.31% 0.97 57.94% 18.52% 1.00 12.41% 1.00
ByteVector 100.00% 45.45% 1.00 55.68% 1.00 72.35% 25.22% 1.00 28.89% 1.00 77.19% 0.58% 1.00 8.60% 1.00
ChunkedLongArray 100.00% 94.07% 0.73 94.81% 0.78 68.26% 77.24% 0.07 30.38% 1.00 43.62% 89.72% 0.00 25.96% 0.80
FontInfo 88.00% 77.53% 1.00 90.87% 0.12 84.68% 49.64% 1.00 42.49% 1.00 78.79% 55.56% 1.00 57.88% 1.00
FTPFile 89.47% 57.02% 1.00 86.14% 0.75 86.36% 62.59% 1.00 83.69% 0.83 85.29% 50.00% 1.00 27.65% 1.00
HPropertyParser 78.00% 60.70% 1.00 91.77% 0.00 56.64% 42.10% 0.97 40.56% 1.00 80.30% 42.42% 1.00 33.48% 1.00
HSLColor 98.28% 96.26% 1.00 97.13% 0.83 89.71% 83.23% 1.00 45.74% 1.00 66.00% 70.67% 0.00 43.80% 0.95
IStreamTokenizer 100.00% 14.81% 1.00 78.27% 1.00 88.29% 21.62% 1.00 35.66% 1.00 87.95% 6.02% 1.00 14.46% 1.00
ImprovedTokenizer 95.00% 91.92% 1.00 90.17% 0.87 68.83% 71.38% 0.00 38.10% 1.00 82.95% 60.47% 1.00 26.20% 1.00
Inflection 85.00% 80.00% 1.00 76.00% 0.85 42.86% 27.62% 1.00 22.48% 1.00 69.23% 33.33% 1.00 26.15% 1.00
IntHashMap 90.48% 98.57% 0.00 97.70% 0.00 71.03% 78.02% 0.00 62.55% 0.97 63.38% 56.34% 1.00 24.08% 1.00
ParameterParser 89.74% 58.63% 1.00 88.59% 0.68 66.86% 27.41% 1.00 36.43% 1.00 66.18% 3.43% 1.00 10.15% 1.00
Range 96.15% 0.00% 1.00 97.18% 0.27 84.81% 0.00% 1.00 64.81% 1.00 74.03% 0.00% 1.00 0.00% 1.00
RationalNumber 83.33% 65.00% 1.00 77.17% 0.67 52.10% 55.94% 0.00 54.85% 0.25 53.33% 47.50% 1.00 45.83% 1.00
SubjectParser 85.71% 25.00% 1.00 81.07% 0.88 69.85% 19.85% 1.00 41.18% 1.00 50.00% 7.14% 1.00 21.79% 1.00
TimeStamp 100.00% 93.33% 1.00 100.00% 0.50 88.04% 95.12% 0.07 85.33% 1.00 96.88% 100.00% 0.00 62.50% 1.00
VCardBean 95.45% 87.46% 1.00 71.36% 0.90 82.61% 70.99% 1.00 44.84% 1.00 81.03% 38.22% 1.00 35.00% 1.00
WeakHashtable 53.33% 0.00% 1.00 75.33% 0.00 6.45% 0.00% 1.00 9.93% 0.00 21.95% 0.00% 1.00 17.32% 0.85
XmlElement 80.00% 68.62% 1.00 76.81% 0.63 69.28% 35.65% 1.00 35.54% 1.00 75.71% 33.05% 1.00 27.40% 1.00
XMLParser 86.11% 13.89% 1.00 48.06% 1.00 73.68% 14.47% 1.00 31.71% 1.00 77.78% 3.70% 1.00 15.93% 1.00

Mean 89.03% 60.32% 0.94 80.39% 0.64 69.53% 45.45% 0.76 44.22% 0.90 69.48% 35.83% 0.85 26.83% 0.98

achieved 60.32% and EvoSuite 80.39%. The branch coverage
achieved by Randoop was lower in 19 of 20 cases, and
significantly so in 18 cases; note that Randoop could not
generate any tests for class WeakHashtable and produced
only non-compilable tests for class Range (both cases due
to Java generics). Randoop achieved a significantly higher
branch coverage for class IntHashMap. On closer look at how
the game for this class evolved, we observed that the in-game
tests missed 4 branches that the Randoop test suites did cover.
A plausible conjecture, that also applies for the rest of the
games, is that the CODE DEFENDERS highlighting feature,
which currently only shows line coverage rather than branch
coverage, may have misled defenders into thinking some parts
of the code were fully tested, when in reality they were not.
The average effect size of Ā12 = 0.94 confirms that the CODE
DEFENDERS tests indeed achieve substantially higher coverage.
For 14 classes coverage is also higher than that of the test
suites generated by EvoSuite, with 9 being significant. However,
there are also 5 classes (4 significant) where EvoSuite achieved
higher coverage, and one where the coverage is identical.

The average mutation score calculated by Major on the CODE
DEFENDERS test suites is 69.53%, which is again substantially
higher than that achieved by Randoop (45.45% on average)
and EvoSuite (44.22% on average). There are 16 classes where
the mutation score is higher than Randoop’s (significant in 4
cases), but there are also 4 cases where the mutation score is
lower (significant in 2 cases). Compared to EvoSuite there are
no cases with significant differences, but the mutation score
of the CODE DEFENDERS test suites is higher in 18 cases.

Finally, we also calculated the mutation scores based on
the mutants generated during the gameplay. A similar pattern
is revealed here: For ChunkedLongArray, HSLColor, and
TimeStamp the Randoop test suites have higher mutation

scores, but for all other comparisons the CODE DEFENDERS
test suites have higher scores. On average, CODE DEFENDERS
tests achieve a mutation score of 69.48%, whereas Randoop and
EvoSuite tests only achieve 35.83% and 26.83%, respectively.

RQ3: Crowdsourcing achieves higher coverage and
mutation scores than state-of-the-art test generation tools.

Example. The following test, created in the game played
on class WeakHashtable, illustrates how players use stronger
assertions than the regression assertions that automated tools
are able to generate [41] (for example, by asserting on chains
of calls, and using observers that take parameters):

java.util.HashMap foo = new java.util.HashMap();
WeakHashtable w = new WeakHashtable();
foo.put("a","b");
w.putAll(foo);
assertTrue(w.keySet().contains("a"));
assertTrue(w.containsKey("a"));

However good for coverage and fault-detection, tests created
in CODE DEFENDERS may require post-processing: some
players used profane words in string literals and used esoteric
stratagems to bypass our test code restrictions.

RQ4: Does crowdsourcing lead to stronger mutants than
automatically generated mutants? Figure 6(a) shows the
detection rates for mutants resulting from CODE DEFENDERS
and those generated by Major. The detection rate is the ratio of
1,000 randomly generated tests that detects a mutant; the lower
it is, the harder the mutant is to detect. As we do not know
which Major mutants are equivalent, we calculate hardness
on all mutants; results are similar if considering only mutants
killed by the random tests. On average, the detection rate is 0.04
for CODE DEFENDERS mutants, and 0.09 for Major mutants.
The difference is significant according to a Mann-Whitney U
test at p < 0.001 with a medium effect size of Ā12 = 0.37.
Consequently, CODE DEFENDERS mutants are harder to kill.
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Fig. 6: Comparison of Code Defenders and Major mutants

RQ4: Mutants created by CODE DEFENDERS are harder to
kill than mutants created by Major.

Examples. The highest-scoring mutant in the study is a subtle
replacement of a 16-base number in class IntHashMap, which
was ultimately killed in the game, but survived all automatically
generated tests (“-” means original class; “+” means mutant):
- int index = (hash & 0x7FFFFFFF) % tab.length;
+ int index = (hash & 0x7EFFFFFF) % tab.length;

While this mutant is similar in nature to the common constant
replacement mutation operator, it does suggest that players can
identify subtle mutants. Other mutants are different to standard
operators, for example by replacing references:
- return this;
+ return new ByteVector();

Again, this mutant was not killed by any generated tests,
although it was killed in the game. Finally, string modifications
were common throughout the games, supporting recent evidence
that such operators are missing in standard mutation tools [24].
For example, the following mutant for ImprovedTokenizer
requires testers to use different delimiters, including one with
a capital letter. This mutant was killed in CODE DEFENDERS,
but not by any generated tests.
- myDelimiters = delimiters;
+ myDelimiters = delimiters.toLowerCase();

RQ5: Do mutation scores on crowdsourced mutants correlate
with mutation scores on traditional mutants? While having
strong mutants is helpful for guiding test generation, mutants
are also used to assess the quality of a test suite. It has been
shown that mutation scores (on mutants generated with Major)
correlate to real fault detection [24]; thus we would like to see
whether mutation scores calculated using CODE DEFENDERS
mutants are similar to mutation scores calculated on standard
mutants. Figure 6(b) plots the relation of the mutation scores:
There is a moderate positive correlation (Spearman 0.59, p
< 0.001; Pearson’s r 0.57, p < 0.001, Kendall’s tau 0.39, p
< 0.001) between the two, suggesting that CODE DEFENDERS
mutants are suitable for calculating mutation scores. The
slightly lower scores suggest that CODE DEFENDERS leads to
less inflated scores [30] than mutation tools.

RQ5: There is moderate positive correlation between CODE
DEFENDERS and Major mutation scores.

D. Discussion

Some aspects more intrinsic to the dynamics of the game
only surfaced as a result of observing the games played during
our experiments. We observed that if defenders or attackers
do not engage in the game early after it starts, they play in
disadvantage and may feel discouraged to submit new mutants
or tests, and therefore negatively affect the final outcome of the
game. This undesirable effect is notorious in the games played
on classes SubjectParser and TimeStamp, where one single
defender submitted strong sets of tests early in the game, such
that the rest of defenders remained inactive throughout those
games. Alternatives to prevent games from early stagnation
could involve ranking tests by non-functional properties (e.g.,
length or readability [11]) such that defenders have the chance
to catch up if they submit shorter, more readable tests, possibly
even stealing points from other team members. In general, an
open challenge is to foster the creation of mutants and tests
that are not only strong, but also of high quality.

Player motivation and engagement are key factors to the
success of the CODE DEFENDERS crowdsourcing approach.
The game played on class WeakHashtable showcases this
problem: Players simply did not engage with this game and
created only 41 mutants and merely 11 tests, achieving the
lowest code coverage and mutation score in the experiment. It
is worth noting, however, that WeakHashtable is likely one of
the most complex classes in our experiment.

The last game of our experiment (class XMLParser) illus-
trates a scenario where human-written tests are unmatched
by state-of-the-art test generation tools. Based on our limited
empirical evidence, we speculate that the CODE DEFENDERS
approach could be particularly apt and worthwhile for testing
code with more complex logic involved, on which automated
test generation tools often struggle.

VI. RELATED WORK

There are several successful examples of gamification for
software engineering, where the methodology has been applied
mostly to increase the motivation and performance of people
participating in software engineering activities [34], such as
removing static analysis warnings [3] or committing changes
often to version control [42]. In contrast, CODE DEFENDERS is
intended for outsourcing some of the developers’ work, rather
than getting them more engaged with the testing tasks.

Chen and Kim [10] designed a game, where players solve
puzzles that represent object mutation or constraint solving
problems, to support automated test generation tools. While this
aim is similar to ours, the approach is purely based on puzzle-
solving, and does not make use of competitive or cooperative
elements. However, it might be possible to involve automated
test generation tools in the CODE DEFENDERS game, in order
to drive players to focus on areas where the tools struggled.

Dietl et al. [13] gamified the verification of certain program
properties such that players are not aware of the underlying
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verification task. In contrast, CODE DEFENDERS makes explicit
use of the coding skills of participants. However, abstracting
away from code is something that might enable the application
of CODE DEFENDERS to other types of testing in the future.

CodeHunt [7], based on Pex4Fun [46], is a game that
integrates coding and test generation. Tests are used to help
players find the solutions to coding puzzles, but players do not
actively write tests.

There have been some attempts to use gamification in an
educational setting to better engage students with software
testing. For example, Elbaum et al. [15] developed Bug
Hunt, a web-based tutorial system where students have to
apply different testing techniques to solve challenges. Bell
et al. [5] use storylines and quests to gradually introduce
students to testing without explicitly telling them. While this
paper explicitly focuses on the crowdsourcing aspect of CODE
DEFENDERS, we are also considering an educational angle [36].

Crowdsourcing has also been used in relation to software
testing without gamification elements. Crowdsourced testing
is now a common practice in industry, but unlike CODE
DEFENDERS the focus is mainly testing of mobile and web
applications [53]. Testing has also been considered [47] as part
of a general collaborative and crowdsourced approach to soft-
ware engineering [26]. Pastore et al. [32] used crowdsourcing
on Amazon Mechanical Turk in order to have crowdworkers
confirm test oracles with respect to API documentation. Tests
were generated automatically using automated unit test genera-
tion tools. CODE DEFENDERS currently does not address the
test oracle problem, and this approach is thus complementary.

VII. CONCLUSIONS AND FUTURE WORK

Writing good tests and good mutants are hard tasks, and
automated tools often reach the limits of their capabilities in
practice. In this paper, we proposed an alternative approach
based on gamification and crowdsourcing: Teams of players
compete by attacking a program under test with subtle mutants,
and defending the program with tests. At the end of a game
there are sets of strong tests and mutants. Our evaluation on
20 open source Java classes shows that the CODE DEFENDERS
game achieved higher coverage and mutation scores than
state-of-the-art test generation tools, confirming that this is
a promising avenue of research.

There remains, however, much to be done as future work:
Collaboration: CODE DEFENDERS appeals to the competi-

tive nature of players across and within teams: an attacker wants
to defeat the defenders, but also wants to score more points
than other attackers. However, stronger tests and mutants might
result if players could team up and take on testing challenges
involving working together to fully test a program (defenders)
or to try to break an existing test suite (attackers).

Abstraction: The gameplay is currently based on writing
and modifying program code directly, and is thus very similar
in nature to coding. While there are successful crowdsourcing
models based on coding tasks (e.g., TopCoder [25]), games
are often successful when played with more graphical inter-

actions. Research on code visualization, for example the city
metaphor [4, 50], may be well suited for this.

Gamification elements: Incorporating a compelling narra-
tive and more gamification elements, e.g., personalization,
signposting, random rewards and unlockable content [27], could
help improve player engagement and enjoyment.

Dependencies: Using more complex classes than the ones
in our studies might require players to consult additional
information (e.g., source code of dependencies or API docs).
This may carry implications on the playability of the game
and would require changes at the user interface level.

Test oracles: CODE DEFENDERS currently produces regres-
sion tests and mutants, like automated tools also do. However,
it would be even better to have players provide real test
oracles. For example, testers could base their assertions on
API specifications rather than source code, similar to the
CrowdOracles approach [32]. However, the gameplay would
need to be adapted, as tests would then also fail on the program
under test if a real bug is discovered.

Testing aspects: CODE DEFENDERS currently targets unit
testing of Java classes, and rewards tests that are good at
detecting faults. A main reason for this lies in the comparability
to automated tools. It will be of interest to transfer the game
to other languages, other types of testing (e.g., GUI testing),
and to optimize other attributes of tests (e.g., readability).

Tool integration: The starting point of a game currently is
an empty test suite and no mutants. Artefacts generated by
tools may offer a different starting point, to focus the game on
those aspects the tools struggle with. It may also be possible
to integrate these tools as further incentive mechanisms (e.g.,
by trading points against automatically generated tests).

Incentives: Besides the general competitive nature of the
game, in our experiments we used prizes (Amazon vouchers)
for the winner of each team as incentive. While this may be a
suitable approach for conducting a research study, in practice
more refined strategies will be required, for example where
each participant receives payment proportional to their contri-
bution (e.g. based on points). Existing research on incentive
mechanisms (e.g., [39]) may help to identify improvements.

Application: While our experiments have demonstrated the
general feasibility of the idea, we have not yet explored how
the game would be applied in practice. There remain open
questions, such as how long games should last, how many
players they need, and what the costs would be. Furthermore,
there are open questions around when and on which code one
would apply such an approach rather than automated tools.

Mutants and tests: A more exhaustive qualitative analysis
of the mutants and tests produced in CODE DEFENDERS
remains as future work. For instance: Are developers willing
to accept the tests produced in a crowdsourcing scenario? Do
the mutants produced in the game match existing mutation
operators or can new operators be derived from them?
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